Skip to content Skip to sidebar Skip to footer

Determine if Piecewise Function Continuous Calculator

FINDING CONTINUITY OF PIECEWISE FUNCTIONS

About "Finding Continuity of Piecewise Functions"

Finding Continuity of Piecewise Functions :

Here we are going to how to find out the point of discontinuity for a piecewise function.

Finding Continuity of Piecewise Functions - Examples

Question 1 :

A function f is defined as follows :

Is the function continuous?

Solution :

(i) First let us check whether the piece wise function is continuous at x = 0.

For the values of x lesser than 0, we have to select the function f(x)  =  0.

lim x->0- f(x)  =limx->0- 0

  =  0 -------(1)

For the values of x greater than 0, we have to select the function f(x)  =  x.

limx->0+ f(x)  =  limx->0+ x

  =  0  -------(2)

lim x->0 - f(x) = lim x->0 + f(x)

Hence the function is continuous at x = 0.

(ii) Let us check whether the piece wise function is continuous at x = 1.

For the values of x lesser than 1, we have to select the function f(x)  =  x.

limx->1- f(x)  =  limx->1- 0

  =  1 -------(1)

For the values of x greater than 1, we have to select the function f(x)  =  -x2 + 4x - 2.

limx->1+ f(x)  =  limx->1+ (-x2 + 4x - 2)

  =  -12 + 4(1) - 2

=  -1 + 4 - 2

=  1  -------(2)

lim x->1 - f(x) = lim x->1 + f(x)

Hence the function is continuous at x = 1.

(iii) Let us check whether the piece wise function is continuous at x = 3.

For the values of x lesser than 3, we have to select the function f(x)  =  -x2 + 4x - 2.

limx->3- f(x)  =  limx->3- -x2 + 4x - 2

  =  -32 + 4(3) - 2

=  -9 + 12 - 2

=  -11 + 12

  =  1  -------(1)

For the values of x greater than 3, we have to select the function f(x)  =  4 - x

limx->3+ f(x)  =  limx->3+ 4 - x

=  4 - 3

=  1  -------(2)

lim x->3 - f(x) = lim x->3 + f(x)

Hence the function is continuous at x = 3.

Question 2 :

Find the points of discontinuity of the function f, where

Solution :

For the values of x greater than 2, we have to select the function x + 2.

limx->2- f(x)  =  limx->2- x + 2

  =  2 + 2

       =  4  -------(1)

For the values of x lesser than 2, we have to select the function x2.

limx->2+ f(x)  =  limx->2+ x2

  =  22

       =  4-------(2)

lim x->2 - f(x) = lim x->2 + f(x)

The function is continuous at x = 2.

Hence the given piecewise function is continuous for all x ∈ R.

Question 3 :

Find the points of discontinuity of the function f, where

Solution :

For the values of x greater than 2, we have to select the function x2 + 1

limx->2- f(x)  =  limx->2- x2 + 1

  = 2 2  + 1

       =  5  -------(1)

For the values of x lesser than 2, we have to select the function x3 - 3.

limx->2+ f(x)  =  limx->2+ x3- 3

  =  23 - 3

=  8 - 3

       =  5-------(2)

lim x->2 - f(x) = lim x->2 + f(x)

The function is continuous at x = 2.

Hence the given piecewise function is continuous for allx ∈ R.

Question 4 :

Find the points of discontinuity of the function f, where

Solution :

Here we are going to check the continuity between 0 andπ/2.

For the values of x lesser than or equal toπ/4 , we have to choose the function sin x.

limx-> π/4- f(x)  =  limx-> π/4 - sin x

       =  sin (π/4)

=  1/ √2

For the values of x greater thanπ/4, we have to choose the function cos x .

limx-> π/4+ f(x)  =  limx-> π/4 + cos x

       =  cos (π/4)

=  1/ √2

The function is continuous for all x ∈ [0, π/2).

After having gone through the stuff given above, we hope that the students would have understood, " Finding Continuity of Piecewise Functions"

Apart from the stuff given in " Finding Continuity of Piecewise Functions" , if you need any other stuff in math, please use our google custom search here.

Kindly mail your feedback tov4formath@gmail.com

We always appreciate your feedback.

© All rights reserved. onlinemath4all.com

valentinasaing74.blogspot.com

Source: https://www.onlinemath4all.com/finding-continuity-of-piecewise-functions.html

Post a Comment for "Determine if Piecewise Function Continuous Calculator"